MATH4010 Functional Analysis (2020-21): Homework 2: Deadline: 5 OCT 2020

Important Notice:

♣ The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

 \bigstar Each answer paper must include your name and student ID.

1. Let $X := \{f : [a,b] \to \mathbb{R} : f \text{ is continuous on } \mathbb{R}\}$. For each $f \in X$, let $||f||_1 := \int_a^b |f(t)| dt$ and $||f||_{\infty} := \sup\{|f(t)| : t \in [a,b]\}$. Put

$$Tf(x) := \int_{a}^{x} f(t)dt$$

for $x \in [a, b]$.

- (i) Are $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ equivalent norms?
- (ii) Is X a Banach space under the norm $\|\cdot\|_1$?
- (iii) If T is viewed as the operator from $(X, \|\cdot\|_1)$ to $(X, \|\cdot\|_\infty)$, find $\|T\|$.
- (iv) If T is viewed as the operator from $(X, \|\cdot\|_1)$ to $(X, \|\cdot\|_1)$, find $\|T\|$.
- 2. Let $(X, \|\cdot\|)$ be a normed space. Suppose that $X = E \oplus F$ for some closed subspaces E and F of X, that is, $E \cap F = \{0\}$ and for each $x \in X$, there are elements $u \in E$ and $v \in F$ such that x = u + v. We define a new norm on X by $\|x\|_1 := \|u\| + \|v\|$, where $x \in X$ and x = u + v for some $u \in E$ and $v \in F$.

Write X_1 for the normed space $(X, \|\cdot\|_1)$. Define a linear map

$$T: x \in E \mapsto \bar{x} \in X_1/F$$

where \bar{x} denotes the equivalence class of x in X_1/F . Show that T is a bounded linear isomorphism. Is the inverse T^{-1} also bounded?